r47 vs r48 | ||
---|---|---|
... | ... | |
82 | 82 | |
83 | 83 | 극한이 [math(L)]로 수렴할 경우, 유일(unique)하다. (여기 보통위상[*보통위상]에서는. [[위상]]이 어떤 구성으로 되어있느냐에 따라 수렴하는 극한값이 유일하지 않을 수 있다.) |
84 | 84 | |
85 | {{{+1 '''0.'''}}} 가정하기를(Suppose that) 서로 다른 두 실수 [math(L_{1})]과 [math(L_{2})]에 대하여 [math(L_{1} < L_{2})]이라고 되면서 | |
86 | ||[math(\displaystyle{\lim_{x \to a} f\left( x \right)=L_{1}})]이고 [math(\displaystyle{\lim_{x \to a} f\left( x \right)=L_{2}})]|| | |
87 | 라고 하자. (곧 [math(x \to a)]의 극한값이 둘이라고 하자.) | |
88 | ||
89 | {{{+1 '''1.'''}}} 그러면 함수의 정의에 따라 [math(L_{1})]과 [math(L_{2})]에 따른 임의의 두 양수 [math(\epsilon_{1})], [math(\epsilon_{2})]에 대하여 ([math(\epsilon_{1})], [math(\epsilon_{2})]이 그 어떤 값이라도) 적당한 양수 [math(\delta_{1})], [math(\delta_{2})]가 존재하여 다음을 만족한다. 다시 말해, 다음 두 명제는 참이 된다. | |
90 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-\delta_{1} < x < a+\delta_{1})]이면 | |
91 | >[math(L_{1}-\epsilon_{1}< f\left(x\right) < L_{1}+\epsilon_{1})]이다. | |
92 | >------- | |
93 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-\delta_{2} < x < a+\delta_{2})]이면 | |
94 | >[math(L_{2}-\epsilon_{2}< f\left(x\right) < L_{2}+\epsilon_{2})]이다. | |
95 | ||
96 | {{{+1 '''2.'''}}} 이 때 양수 [math(\epsilon)]을 | |
97 | ||[math(\displaystyle{{\color{blue}\epsilon} < {{L_{2} - L_{1}}\over{2}}})]|| | |
98 | 을 만족하는 적당한 값으로 두자. | |
99 | ||
100 | {{{+1 '''3.'''}}} 이 때 '''2.'''에서 [math(\epsilon_{1}={\color{blue}\epsilon})], [math(\epsilon_{2}={\color{blue}\epsilon})]으로 두어도 '''1.'''에 따라 적당한 양수 [math(\delta_{1})], [math(\delta_{2})]가 존재하여 다음을 만족한다. | |
101 | ([math(\epsilon_{1}=\epsilon_{2}={\color{blue}\epsilon})]을 대입한 것이며, 두 명제는 참이 된다.) | |
102 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-\delta_{1} < x < a+\delta_{1})]이면 | |
103 | >[math(L_{1}-{\color{blue}\epsilon}< f\left(x\right) < L_{1}+{\color{blue}\epsilon})]이다. | |
104 | >------- | |
105 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-\delta_{2} < x < a+\delta_{2})]이면 | |
106 | >[math(L_{2}-{\color{blue}\epsilon}< f\left(x\right) < L_{2}+{\color{blue}\epsilon})]이다. | |
107 | ||
108 | {{{+1 '''4.'''}}} '''3.'''에서 양수 [math(\delta)]를 [math(\delta_{1})]과 [math(\delta_{2})] 중 작은 값으로 결정하면 다음 역시 만족한다.([math(\delta_{1}=\delta_{2}={\color{red}\delta})]을 대입한 것이며 두 명제는 참이 된다.) | |
109 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-{\color{red}\delta} < x < a+{\color{red}\delta})]이면 | |
110 | >[math(L_{1}-{\color{blue}\epsilon}< f\left(x\right) < L_{1}+{\color{blue}\epsilon})]이다. | |
111 | >------- | |
112 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-{\color{red}\delta} < x < a+{\color{red}\delta})]이면 | |
113 | >[math(L_{2}-{\color{blue}\epsilon}< f\left(x\right) < L_{2}+{\color{blue}\epsilon})]이다. | |
114 | ||
115 | {{{+1 '''5.'''}}} '''4.'''의 두 명제를 합하면 다음 명제는 참이 된다. (필요조건이 동일하므로, 충분조건만을 합치면 된다.) | |
116 | >[math(x \in D)]이고 [math(x \neq a)], [math(a-{\color{red}\delta} < x < a+{\color{red}\delta})]이면 | |
117 | >[math(L_{1}-{\color{blue}\epsilon}< f\left(x\right) < L_{1}+{\color{blue}\epsilon})]__이면서__ [math(L_{2}-{\color{blue}\epsilon}< f\left(x\right) < L_{2}+{\color{blue}\epsilon})]이다. | |
118 | ||
119 | {{{+1 '''6.'''}}} 이 때('''5.'''에서) 모순(contradiction)이 발생한다. | |
120 | 왜냐면 '''5.'''의 결론부분인 | |
121 | >[math(L_{1}-{\color{blue}\epsilon}< f\left(x\right) < L_{1}+{\color{blue}\epsilon})]__이면서__ [math(L_{2}-{\color{blue}\epsilon}< f\left(x\right) < L_{2}+{\color{blue}\epsilon})]이다. | |
122 | 에서 다음 두 집합 | |
123 | [math(D_{1}=\left\{ y | L_{1}-{\color{blue}\epsilon}< y < L_{1}+{\color{blue}\epsilon}\right\})] | |
124 | [math(D_{2}=\left\{ y | L_{2}-{\color{blue}\epsilon}< y < L_{2}+{\color{blue}\epsilon}\right\})] | |
125 | 을 정의하면 | |
126 | [math(D_{1})]와 [math(D_{2})]는 서로 소이기 때문이다. | |
127 | * 더 자세히 말하자면, [math(D_{1})]의 모든 지점은 [math(L_{1}+{\color{blue}\epsilon})]보다 작은 값의 지점이며 [math(D_{2})]의 모든 지점은 [math(L_{2}-{\color{blue}\epsilon})]보다 큰 값의 지점이다. | |
128 | * '''2.'''에서 [math(\displaystyle{{\color{blue}\epsilon} < {{L_{2} - L_{1}}\over{2}}})]이므로 ([math(L_{2})]와 [math(L_{1})]의 차이의 절반보다 작은 값이다.) | |
129 | [math(L_{1}+{\color{blue}\epsilon} < L_{2}-{\color{blue}\epsilon})] | |
130 | 이므로 [math(D_{1})]의 그 어느 점도 [math(D_{2})]의 원소가 될 수 없으면서 [math(D_{2})]의 그 어느 점도 [math(D_{1})]의 원소가 될 수 없다. | |
131 | ||
132 | 따라서 '''5.'''의 명제는 '''거짓이 되는 모순이 생긴다.''' | |
133 | ||
134 | {{{+1 '''7.'''}}} '''6.'''에서 시작하여 어디서 거짓이 되었는가를 찾고자 거슬러 올라가고 거슬러 올라가기를 거듭함으로써, 처음 가정했던 '''0.'''이 거짓이 된다. 곧 수렴하는 극한값이 2개가 된다는 말은 거짓이며, 이는 __귀류법에 따라__ 수렴하는 극한값이 유일성이 증명된다. | |
135 | ||
85 | 136 | ------- |
86 | 137 | [anchor(극한점 전제조건)]{{{+2 극한점임이 전제되어야 하는 이유}}} |
87 | 138 | |
... | ... |