•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

제곱근(비교)

r37 vs r39
11
[[분류:수학]]
2
[tableofcontents]
23
== 개요 ==
34
반대말은 제곱[* 또 [math(y=\sqrt{x})] 이 함수는 이차함수에 대해서 역함수다.]. [math(x^2=a)] 일 때 [math(x=\sqrt{a})], [math(x=-\sqrt{a})]라고 하며 기호 [math(\sqrt{})]를 쓴다. 근호가 뿌리처럼 생겼다고 해서 기호 이름이 루트이다.
45
......
4546
4647
따라서 [math(i)]의 제곱근은 [math({{\sqrt{2}}\over{2}}+{{\sqrt{2}}\over{2}}i)]와 [math(-{{\sqrt{2}}\over{2}}-{{\sqrt{2}}\over{2}}i)]임을 알 수 있다.
4748
48
한편 [math(i)]의 제곱근을 조금 식을 바꿔 표현하면 다음과 같이 된다.
49
[math(\cos\left({{\pi} \over {4}}\right)+i \sin\left({{\pi} \over {4}}\right))], [math(\cos\left({{5\pi} \over {4}}\right)+i \sin\left({{5\pi} \over {4}}\right))]
50
실제로 복소평면[* 수직선을 생각해보면 이해하기 쉬운 개념이다. 실수부 수직선과 직교되는 허수부 수직선이 있다. 흔히 생각하는 좌표평면처럼 되며, 복소수를 점으로 표시할 수 있다. 단, 복소수는 대소를 비교할 수 없음에 유의하자.]상에서 [[삼각함수]]를 이런 용도로도 사용할 수 있다. [math(i)]의 경우 [math(i=\cos\left({{\pi} \over {2}}\right)+i \sin\left({{\pi} \over {2}}\right))]가 된다.
51
5249
=== 세제곱근 ===
5350
세제곱근 8인 [math(8 = \sqrt[3]8)] 은 실수 범위 내에서는 2이지만 복소수 범위에서는 [math(x=2 \text{ ,or }x=-1\pm\sqrt{3}i)]가 있다.
5451
5552
[math(x^3=-1)]이나 [math(x^3=1)]을 구해야 하는 경우가 있다. 이는 [math(\omega)] 기호를 이용하여 나타내기도 한다.
5653
일단 [math(x^3-1=0)]로 이항한 후 인수분해를 하면 [math(x^3-1=(x-1)(x^2+x+1)=0)] 이 식이 되는데, 그러면 근은 [math(x=1\;\textsf{or}\;x=\dfrac{-1\pm \sqrt 3i}{2})] 이 된다. 한 허근이 [math(\omega)]이면 다른 허근은 켤레복소수이므로 [math(\overline \omega)]가 된다.
5754
55
=== [[삼각함수]]를 이용한 방법 ===
56
한편 [math(i)]의 제곱근을 조금 식을 바꿔 표현하면 다음과 같이 된다.
57
[math(\cos\left({{\pi} \over {4}}\right)+i \sin\left({{\pi} \over {4}}\right))], [math(\cos\left({{5\pi} \over {4}}\right)+i \sin\left({{5\pi} \over {4}}\right))]
58
실제로 복소평면[* 수직선을 생각해보면 이해하기 쉬운 개념이다. 실수부 수직선과 직교되는 허수부 수직선이 있다. 흔히 생각하는 좌표평면처럼 되며, 복소수를 점으로 표시할 수 있다. 단, 복소수는 대소를 비교할 수 없음에 유의하자.]상에서 [[삼각함수]]를 이런 용도로도 사용할 수 있다. [math(i)]의 경우 [math(i=\cos\left({{\pi} \over {2}}\right)+i \sin\left({{\pi} \over {2}}\right))]가 된다.
59
60
1의 세제곱근은 1주기가 [math(2\pi)]임을 이용, 다음으로도 표기가 가능하다.
61
[math(\cos\left({2\pi}\right)+i \sin\left({2\pi} \right)=1+0i=1)]
62
[math(\cos\left({{2\pi} \over {3}}\right)+i \sin\left({{2\pi} \over {3}}\right)=-{{1}\over{2}}+{{\sqrt{3}}\over{2}}i)]
63
[math(\cos\left({{4\pi} \over {3}}\right)+i \sin\left({{4\pi} \over {3}}\right)=-{{1}\over{2}}-{{\sqrt{3}}\over{2}}i)]
64
65
5866
== 둘러보기 ==
5967
* [[제곱]]과 거듭제곱
60
* [[지수]], 지수법칙, [[지수함수]]
68
* [[지수]], [[지수법칙]], [[지수함수]]
6169
* [[로가리듬]], [[로그함수]] : 지수를 실수 범위로 확장한 지수법칙을 이용하면 로가리듬의 여러 성질을 증명할 수 있다.
6270
* [[방정식]]
6371
* [[이차방정식]]
......