•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

극한(비교)

r105 vs r110
......
4848
상수 [math(L \in \mathbb{R})]에 대하여 다음 명제 곧
4949
> __[math(x \in D)]이고__ [math(x \neq a)], [math(a-\delta < x < a+\delta)]이면[* 이는 [math(0 < \left\| x-a \right\| < \delta)]와 동치이며, 여기에서 꼭 [math(x=a)]__일 필요는 없음__이 나타닌다.]
5050
> [math(L-\epsilon< f\left(x\right) < L+\epsilon)]이다.[* 이는 [math({\color{gray}0\leq \ }\left\| f \left(x \right)-L \right\| < \epsilon)]와 동치이다. 회색으로 칠한 부등호([math(0\leq )]) 부분은 [math(f \left(x \right))]와 [math(L)]의 오차가 [math(0)]으로 나오는 경우([math(f \left(x \right)=L)]이 성립하는 경우. 잘 아는 예로는 함숫값이 [math(x)]의 값에 관계없이 일정한 상수로만 나오는 함수가 있다.)가 있으므로 기술을 잘 하지 않는 편이다.]
51
를 참이 되게 할 수 있는 __적당한 양수 [math(\delta)]를 항상 정할 수__ 있는 상수 [math(L)]이 존재할 때 ("차"라는 뜻의 '''d'''ifference를 생각해보자.)
51
를 참이 되게 할 수 있는 __적당한 양수 [math(\delta)]를 항상 정할 수__ 있는 상수 [math(L)]이 존재할 때 ("차"라는 뜻의 '''d'''ifference를 생각해보자.)
5252
5353
함수 [math(f\left(x\right))]는 [math(x=a)]에서 [math(L)]로 '''수렴한다'''고 말하며 (동치로서) 기호로는 [math(\displaystyle\lim_{x\to a}f(x)=L)]으로 표기한다.
5454
......
285285
> [math(a)]를 포함하는 열린집합 [math(O_{\delta})]가 존재하여 [math(x \in O_{\delta} \backslash \left\{ a \right\})] 이면 [math(f\left(x\right) \in O_{\epsilon})]일 경우
286286
> 함수 [math(f)]는 [math(x=a)]에서 극한을 가진다고 말한다.
287287
288
여기에서 위상수학에서 다루는 부분으로 넘어가서 정의를 해보자면 몇 가지의 제약조건이 더 생기게 된다. 앞의 [[#엡실론 델타법|엡실론 델타법]]은 정의역이 보통위상의 집합 [math(\mathbb{R})]이고 공역이 보통위상의 집합 [math(\mathbb{R})]인 함수에 대해서 다뤘다면, 위상공간에서는 일반적으로 위상이 있는 정의역 집합에서 위상이 있는 공역 집합으로 가는 함수에 대해서 다루어야 하며 정의역과 공역은 그 위상이나 집합이 서로 다를 수 있기 때문이다.
288
여기에서 위상수학에서 다루는 부분으로 넘어가서 정의를 해보자면 몇 가지의 제약조건이 더 생기게 된다. 앞의 [[#엡실론 델타법|엡실론 델타법]]은 정의역이 보통위상의 집합 [math(\mathbb{R})]의 부분집합이고 공역이 보통위상의 집합 [math(\mathbb{R})]인 함수에 대해서 다뤘다면, 위상공간에서는 일반적으로 위상이 있는 집합의 정의역{{{#gray 인 부분집합}}}에서 위상이 있는 공역 집합으로 가는 함수에 대해서 다루어야 하며 정의역과 공역은 그 위상이나 집합이 서로 다를 수 있기 때문이다.
289289
290290
먼저 어디가 정의역 집합의 위상에 대한 열린집합이며 어디가 공역 집합의 위상에 대한 열린집합인지를 구분해야 할 필요가 있다.
291291
......