•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

극한(비교)

r17 vs r22
......
99
== 엡실론‐델타법 ==
1010
고등학교 과정을 넘어가면 다음과 같이 엄밀하게 배운다. 기호가 조금 복잡할 수 있겠지만 천천히 살펴보면 집합과 명제(멱집합), 부등호, 절댓값, 함숫값 개념의 결합으로 이루어진 정의(Definition)이므로 이해하기 쉬울 수 있다. 기호를 풀어 쓰면 다음과 같다.
1111
12
[math(x \to a)]의 경우는 다음과 같이 된다. ([math(f\left(x\right))]의 정의역에 대하여 [math(x=a)]가 __극한점(limit point)__[* 실수 전체 집합 [math(\mathbb{R})]에서의 "보통위상(Usual Topology)" 곧 "[math(\mathbb{R})]에서 열린 구간(이를테면 [math(\left\{x|a<x<b, \ a,b \in \mathbb{R}\right\})])들, 또는 이들의 임의의 합집합(무한 개의 합집합이여도 된다.), 또는 이들의 유한 개의 교집합__으로 구성된 [math(\mathbb{R})]의 부분집합을 원소__로 가지는 집합 [math(\mathcal{T})](이 집합은 당연히 [math(\mathcal{P}(\mathbb{R}))]의 부분집합이다.)을 갖춘 위상"에서는 집적점(accumunation point)을 극한점(limit point)으로 부른다.]이라는 전제가 깔려있어야 한다. 흔히 지수함수처럼 "실수 전체의 집합"이나 로그함수 같이 "0보다 큰 실수의 집합" 등 간단한 제한을 둔 함수를 많이 다루나, 간혹 정의역이 복잡하게 제한되는 경우가 있다.)
12
[math(x \to a)]의 경우는 다음과 같이 된다.
13
14
들어가기 앞서 [math(f\left(x\right))]의 정의역에 대하여 [math(x=a)]가 __극한점(limit point)__[* 실수 전체 집합 [math(\mathbb{R})]에서의 "보통위상(Usual Topology)" 곧 "[math(\mathbb{R})]에서 열린 구간(이를테면 [math(\left\{x|a<x<b, \ a,b \in \mathbb{R}\right\})])들, 또는 이들의 임의의 합집합(무한 개의 합집합이여도 된다.), 또는 이들의 유한 개의 교집합__으로 구성된 [math(\mathbb{R})]의 부분집합을 원소__로 가지는 집합 [math(\mathcal{T})](이 집합은 당연히 [math(\mathcal{P}(\mathbb{R}))]의 부분집합이다.)을 갖춘 위상"에서는 집적점(accumunation point)을 극한점(limit point)으로 부른다.]이라는 전제가 깔려있어야 한다.
15
흔히 지수함수처럼 "실수 전체의 집합"이나 로그함수 같이 "0보다 큰 실수의 집합" 등 간단한 제한을 둔 함수를 많이 다루는 경우라면 정의역의 모든 점 및 경계에 해당되는 지점들(로그함수의 경우에는 간단한 경우 진수가 0으로 되는 [math(x)]의 지점들)이 극한점으로 될 수 있으나, 간혹 정의역이 복잡하게 제한되는 경우가 있다. (이를테면 정의역이 유리수들만으로 제한된 함수가 있다.)
16
그러한 경우에는 극한을 계산하고자 하는 [math(x)]의 지점이 극한점이 됨을 증명해야 한다.
17
18
[math(f\left(x\right))]의 정의역(집합)을 [math(D)]라 할 때 [math(x=a)]가 "[math(D)]의 극한점이 됨"을 보이려면 (꼭 [math(a \in D)]일 필요는 없다.)
19
||임의의 양수 [math(c)]에 대하여
20
[math(\left(\left\{x|a-c<x<a+c\right\} \backslash \left\{ a \right\} \right) \cap D \neq \emptyset)]||
21
임을 보여야한다.
22
------
23
[math(x=a)]가 극한점이라는 전제 하에 함수의 극한의 정의는 다음과 같다.
1324
||[math(x)]에 대한 함수 [math(f\left(x\right))]와 [math(a)]에 대하여
1425
아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 ("오차"라는 뜻의 error를 생각해보자.)
1526
상수 [math(L)]에 대하여 다음 명제 곧
......
2132
2233
만일 해당되는 [math(L)]이 존재하지 않으면, [math(f\left(x\right))]는 [math(x=a)]에서 '''발산한다'''고 말한다. ||
2334
35
극한점이라는 전제가 없으면 문제가 발생한다. 앞의
36
||임의의 양수 [math(c)]에 대하여
37
[math(\left(\left\{x|a-c<x<a+c\right\} \backslash \left\{ a \right\} \right) \cap D \neq \emptyset)]||
38
명제의 부정은
39
||{{{#red 어떤}}} 양수 [math(c)]에 대하여
40
[math(\left(\left\{x|a-c<x<a+c\right\} \backslash \left\{ a \right\} \right) \cap D = \emptyset)]||
41
이 된다. 이 때 [math(\delta<c)]로 되면 당연히
42
||[math(\left(\left\{x|a-\delta<x<a+\delta\right\} \backslash \left\{ a \right\} \right) \cap D = \emptyset)]||
43
가 된다. (포함관계를 생각해보자.)
44
45
여기에서 문제점이 생기게 된다. 왜냐면 앞에 말한 함수의 극한의 정의에서 다음
46
> [math(x \neq a)]이고 [math(a-\delta < x < a+\delta)]이면
47
> [math(L-\epsilon< f\left(x\right) < L+\epsilon)]이다.
48
라는 명제는 [math(x=a)]를 제외한 나머지 [math(x)]지점에서는 '''함숫값이 존재하지 않으므로 거짓'''이 되는 오류가 발생하기 때문이다.
49
2450
-------
2551
무한수열의 경우는 다음과 같이 된다. (실수 [math(x)]에 대한 함수 [math(f(x))]가 자연수 [math(n)]에 대한 함수 [math({\color{green}a_{n}})]으로 바뀌었다고 생각해보자.)
2652
||무한수열 [math({\color{green}a_{n}})]에 대하여
......