•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

극한(비교)

r54 vs r57
......
88
무한 수열 [math(a_{n})] 에 대해 [math(n)]이 무한히 커지고 [math(a_{n})]이 [math(L)]에 가까워지면 [math({\displaystyle \lim_{n\to\infty}}a_{n}= L )] 이라고 한다.
99
1010
== 엡실론을 이용한 극한의 정의 ==
11
고등학교 과정을 넘어가면 다음과 같이 엄밀하게 배운다. 기호가 조금 복잡할 수 있겠지만 천천히 살펴보면 집합(, 집합의 표기법, 포함관계, 멱집합, 집합의 연산), 명제, 부등호, 절댓값, 함수(, 정의역, 공역, 함숫값), 수열 등의 개념의 결합으로 이루어진 정의(Definition), 정리(Theorem)들이므로 이해하기 쉬울 수 있다. "근방" 등의 일부 기호는 풀어서 서술함을 밝힌다.
11
고등학교 과정을 넘어가면 그리스 문자 [math(\epsilon)](엡실론), [math(\delta)](델타) 등을 읽으면서 극한의 정의를 엄밀하게 배운다.
12
기호가 조금 복잡할 수 있겠지만 천천히 살펴보면 집합(, 집합의 표기법, 포함관계, 멱집합, 집합의 연산), 명제, 부등호, 절댓값, 함수(, 정의역, 공역, 함숫값), 수열 등의 개념의 결합으로 이루어진 정의(Definition), 정리(Theorem)들이므로 이해하기 쉬울 수 있다. "[math(\epsilon)]-근방" 등의 일부 기호는 풀어서 서술함을 밝힌다.
1213
* 먼저 실수 전체집합을 [math(\mathbb{R})]이라 하자.
1314
* 공역을 [math(\mathbb{R})]로 두면서도 실수 [math(x)]에 대한 함수 [math(f\left(x\right))]의 정의역(Domain, 곧 집합이 된다.)을 [math(D)]라 하자. (교과서에 따라 [math(E)]라고 적힌 곳도 있지만 쉬운 이해를 위하여 [math(D)]로 적는다.)
1415
* (당연히 [math(D \subset \mathbb{R})]이 된다.)
......
3233
3334
[math(x=a)]가 [math(D)]의 극한점이라는 전제 하에 함수의 극한의 정의는 다음과 같다.
3435
||[math(x)]에 대한 함수 [math(f\left(x\right))]와 [math(a)]에 대하여
35
아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 ("오차"라는 뜻의 error를 생각해보자.)
36
아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 ("오차"라는 뜻의 '''e'''rror를 생각해보자.)
3637
상수 [math(L \in \mathbb{R})]에 대하여 다음 명제 곧
3738
> __[math(x \in D)]이고__ [math(x \neq a)], [math(a-\delta < x < a+\delta)]이면[* 이는 [math(0 < \left\| x-a \right\| < \delta)]와 동치이며, 여기에서 꼭 [math(x=a)]__일 필요는 없음__이 나타닌다.]
3839
> [math(L-\epsilon< f\left(x\right) < L+\epsilon)]이다.[* 이는 [math({\color{gray}0\leq \ }\left\| f \left(x \right)-L \right\| < \epsilon)]와 동치이다. 회색으로 칠한 부등호([math(0\leq )]) 부분은 [math(f \left(x \right))]와 [math(L)]의 오차가 [math(0)]으로 나오는 경우([math(f \left(x \right)=L)]이 성립하는 경우. 잘 아는 예로는 함숫값이 [math(x)]의 값에 관계없이 일정한 상수로만 나오는 함수가 있다.)가 있으므로 기술을 잘 하지 않는 편이다.]
39
를 참이 되게 할 수 있는 __적당한 양수 [math(\delta)]를 항상 정할 수__ 있는 상수 [math(L)]이 존재할 때 ("편차"라는 뜻의 difference를 생각해보자.)
40
를 참이 되게 할 수 있는 __적당한 양수 [math(\delta)]를 항상 정할 수__ 있는 상수 [math(L)]이 존재할 때 ("편차"라는 뜻의 '''d'''ifference를 생각해보자.)
4041
4142
함수 [math(f\left(x\right))]는 [math(x=a)]에서 [math(L)]로 '''수렴한다'''고 말하며 (동치로서) 기호로는 [math(\displaystyle\lim_{x\to a}f(x)=L)]으로 표기한다.
4243
4344
만일 해당되는 [math(L)]이 존재하지 않으면, [math(f\left(x\right))]는 [math(x=a)]에서 '''발산한다'''고 말한다. ||
4445
46
기호들을 사용하면 다음과 같다.
47
||[math(f:D\left(\subset\mathbb{R}\right) \to \mathbb{R},\ a \in D^{\prime})] (여기서 [math(D^{\prime})]는 [math(D)]의 모든 극한점들을 모아놓는 집합이다.)
48
[math(\forall \epsilon >0,\ \exist \delta > 0 \ \text{such as} \\
49
0< \left\|x-a\right\| < \delta \Longrightarrow \left\| f(x)-L\right\| < \epsilon)]||
4550
==== 참고사항1 ====
4651
{{{+2 내점이면 극한점이 되는 이유}}}
4752
......