•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

극한(비교)

r65 vs r68
......
2020
내점(Interior point), 극한점(Limit point) 등의 용어가 나오는데, 이들을 먼저 이해해야 엡실론을 이용한 극한의 정의를 이해할 수 있음을 밝힌다. 다만, 건너뛰고 읽을 위키러들이 있을 수 있으니 문서 중간중간에 정의를 설명해놓았다. 실수체계에 대한 자세한 내용은 [[실수체계|이 문서]]를 참조할 수 있다. 위상에 대한 내용은 [[위상수학|이 문서]] 참조.
2121
2222
기호가 조금 복잡할 수 있겠지만 천천히 살펴보면 집합(, 집합의 표기법, 포함관계, 멱집합, 집합의 연산), 명제, 부등호, 절댓값, 함수(, 정의역, 공역, 함숫값), 수열 등의 개념의 결합으로 이루어진 정의(Definition), 정리(Theorem)들이므로 이해하기 쉬울 수 있다. "[math(\epsilon)]-근방" 등의 일부 기호는 풀어서 서술함을 밝힌다.
23
여기에서는 변수가 1개인 함수를 본다.
2324
* 먼저 실수 전체집합을 [math(\mathbb{R})]이라 하자.
24
* 공역을 [math(\mathbb{R})]로 두면서도 실수 [math(x)]에 대한 함수 [math(f\left(x\right))]의 정의역(Domain, 곧 집합이 된다.)을 [math(D)]라 하자. (교과서에 따라 [math(E)]라고 적힌 곳도 있지만 쉬운 이해를 위하여 [math(D)]로 적는다.)
25
* 공역을 [math(\mathbb{R})]로 두면서도 실수 변수 [math(x)]에 대한 함수 [math(f\left(x\right))]의 정의역(Domain, 곧 집합이 된다.)을 [math(D)]라 하자. (교과서에 따라 [math(E)]라고 적힌 곳도 있지만 쉬운 이해를 위하여 [math(D)]로 적는다.)
2526
* (당연히 [math(D \subset \mathbb{R})]이 된다.)
2627
* (또한 이는 [math(f:D \to \mathbb{R})]이 된다.)
2728
......
3940
흔히 지수함수처럼 "실수 전체의 집합"이나 로그함수 같이 "0보다 큰 실수의 집합" 등 간단한 제한을 둔 함수를 많이 다루는 경우라면 정의역의 모든 점 및 경계에 해당되는 지점들(로그함수의 경우에는 간단한 경우 진수가 0으로 되는 [math(x)]의 지점들)이 극한점으로 될 수 있으나, 간혹 정의역 [math(D)]가 복잡하게 제한되는 경우가 있다. 이를테면 정의역이 유리수들만으로 제한된 함수가 있다.
4041
그러한 경우에는 극한을 계산하고자 하는 [math(x)]의 지점이 극한점이 됨을 증명해야 한다.
4142
42
[math(x=a)]가 [math(D)]의 "내점(Interior point)"이도 충분하다. 왜냐면 [math(x=a)]가 [math(D)]의 '내점'이면 __곧 극한점이 되기 때문__이다. 자세한 이유는 [[#극한점 전제조건|아래 하위 문단의 내용]] 참조.
43
만일 [math(x=a)]가 [math(D)]의 "내점(Interior point)"이라면 그것으로도 충분하다. 왜냐면 [math(x=a)]가 [math(D)]의 '내점'이면 __곧 극한점이 되기 때문__이다. 자세한 이유는 [[#극한점 전제조건|아래 하위 문단의 내용]] 참조.
4344
4445
[math(x=a)]가 [math(D)]의 극한점이라는 전제 하에 함수의 극한의 정의는 다음과 같다.
4546
||[math(x)]에 대한 함수 [math(f\left(x\right))]와 [math(a)]에 대하여
......
5556
이해를 돕기 위해 "수렴한다", "발산한다"라는 표현을 하였으며, 원래는 이보다 "함수 [math(f\left(x\right))]는 [math(x=a)]에서 {{{#blue 극한을 가진}}}다.(A function [math(f\left(x\right))] {{{#blue has a limit}}} at [math(x=a)])" 라는 말로 더 많이 표현한다.
5657
5758
기호들을 사용하면 다음과 같다.
58
||[math(f:D\left(\subset\mathbb{R}\right) \to \mathbb{R},\ \ a \in D^{\prime})] (여기서 [math(D^{\prime})]는 [math(D)]의 모든 극한점들을 모아놓는 집합이다.)
59
||[math(f:D\left(\subset\mathbb{R}\right) \to \mathbb{R},\ \ a \in D^{\prime})]
5960
[math(\displaystyle{\lim_{x\to a}f(x)=L}\\
6061
\Longleftrightarrow \exist L \in \mathbb{R}\ \text{such as}\ \forall \epsilon >0,\ \exist \delta > 0 \ \text{such as} \\
6162
x \in D,\ 0< \left\|x-a\right\| < \delta \Longrightarrow \left\| f(x)-L\right\| < \epsilon)]||
63
여기서 [math(D^{\prime})]는 [math(D)]의 모든 극한점들을 모아놓는 집합이다.
6264
==== 참고사항1 ====
6365
{{{+2 내점이면 극한점이 되는 이유}}}
64
66
{{{#!folding 펼치기, 접기
6567
[math(x=a)]가 [math(D)]의 "내점(Interior point)"이라고 하면 [math(x=a)]가 [math(D)]의 극한점이 됨을 보이자.
6668
6769
{{{+1 '''1.'''}}} 내점의 정의에 따라 다음을 만족한다.
......
127129
를 보자.
128130
위 집합에서는 [math(c)]가 그 어떤 값이 되어도 무수히 많은 유리수가 존재하면서도 이들은 모두 [math(D)]의 원소이다. 따라서 [math(D)]의 원소에 해당되는 모든 [math(x)]의 지점은 [math(D)]의 극한점이 된다.
129131
한편, 위 집합에서는 [math(c)]가 그 어떤 값이라도 __무수히 많은 무리수__가 존재하며, 따라서 위 집합은 [math(D)]의 부분집합이 될 수 없다. 따라서 [math(D)]의 원소에 해당되는 모든 [math(x)]의 지점은 [math(D)]의 내점이 아님을 알 수 있다.
130
(여담으로 [math(\mathbb{Q})]의 극한점들을 모아놓은 집합은 [math(\mathbb{R})]이 된다.)
132
(여담으로 [math(\mathbb{Q})]의 극한점들을 모아놓은 집합은 [math(\mathbb{R})]이 된다.)}}}
131133
132134
-------
133135
{{{+2 수렴하는 극한의 유일성}}}
134
136
{{{#!folding 펼치기, 접기
135137
극한이 [math(L)]로 수렴할 경우, 유일(unique)하다. (여기 보통위상[*보통위상]에서는. [[위상]]이 어떤 구성으로 되어있느냐에 따라 수렴하는 극한값이 유일하지 않을 수 있다.)
136138
137139
{{{+1 '''0.'''}}} 가정하기를(Suppose that) 서로 다른 두 실수 [math(L_{1})]과 [math(L_{2})]에 대하여 [math(L_{1} < L_{2})]이면서
......
183185
184186
따라서 '''5.'''의 명제는 '''거짓이 되는 모순이 생긴다.'''
185187
186
{{{+1 '''7.'''}}} '''6.'''에서 시작하여 어디서 거짓이 되었는가를 찾고자 거슬러 올라가고 거슬러 올라가기를 거듭함으로써, 처음 가정했던 '''0.'''이 거짓이 된다. 곧 수렴하는 극한값이 2개가 된다는 말은 거짓이며, 이는 __귀류법에 따라__ 수렴하는 극한의 유일성이 증명된다.
188
{{{+1 '''7.'''}}} '''6.'''에서 시작하여 어디서 거짓이 되었는가를 찾고자 거슬러 올라가고 거슬러 올라가기를 거듭함으로써, 처음 가정했던 '''0.'''이 거짓이 된다. 곧 수렴하는 극한값이 2개가 된다는 말은 거짓이며, 이는 __귀류법에 따라__ 수렴하는 극한의 유일성이 증명된다.}}}
187189
188190
-------
189
[anchor(극한점 전제조건)]{{{+2 극한점임이 전제되어야 하는 이유}}}
191
[anchor(극한점 전제조건)]{{{+2 적어도 극한점임이 전제되어야 하는 이유}}}
190192
191193
결론부터 말하자면 수렴하는 극한의 유일성에 문제가 발생하기 때문이다.
192
194
{{{#!folding 펼치기, 접기
193195
{{{+1 '''0.'''}}} 가정하기를 [math(x=a)]가 [math(D)]의 극한점이라는 전제가 없다고 하자.
194196
195197
{{{+1 '''1.'''}}} 그럼 [math(x=a)]가 [math(D)]의 극한점이 __아닌 경우__가 존재한다.
......
217219
218220
{{{+1 '''5.'''}}} 이 때 [math(L)]의 값을 아무렇게 잡아도 명제가 참이 된 탓에 "모든 실수값으로 수렴한다"는 오류까지 발생한다. 이는 수렴하는 함수의 유일성에 위배된다.
219221
220
그러므로 [math(x=a)]가 [math(D)]의 극한점이라는 전제가 있어야 한다.
222
그러므로 적어도 [math(x=a)]가 [math(D)]의 극한점이라는 전제가 있어야 한다.}}}
221223
222224
=== 수열의 극한 ===
223225
무한수열의 경우는 다음과 같이 된다. (실수 [math(x)]에 대한 함수 [math(f(x))]가 자연수 [math(n)]에 대한 함수 [math({\color{green}a_{n}})]으로 바뀌었다고 생각해보자.)
......