•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

위상수학(비교)

r11 vs r16
......
33
[[분류:수학]]
44
[목차]
55
== 개요 ==
6
{{{+3 Topologies}}}
6
{{{+3 Topology / 位相數學}}}
7
위상수학은 공간 또는 도형의 구조와 연속성을 다루는 수학의 한 학문이다.
78
== 열린집합과 위상 ==
9
위상수학에서 [[실수체계]]에서 열린구간들로 확인할 수 있는 실수 집합의 각 원소들 사이의 관계와 실수체계의 구조를 보고, 이를 이용하여 실수 전체의 집합만이 아닌 일반적인 집합의 구조를 볼 수 있다. 이런 계산의 기초가 되는 위상과 위상의 요소 중 하나인 열린집합에 대해 먼저 서술한다.
810
=== 실수체계의 위상 ===
911
==== 내점 ====
1012
[math(\mathbb{R})]의 부분집합 [math(A)]가 있다고 하자. 이 때 [math(A)]의 원소(한 지점)인 [math(p)]에 대하여 적당한 양{{{#gray 의 상}}}수 [math(c)]가 있어 [math(\left\{x | a-c<x<a+c\right\} \subset A)]를 만족한다면, [math(p)]는 [math(A)]의 '''내점'''(interior point)이라 부른다.
......
2426
2527
당연하게 보이겠지만 [math(\mathbb{R})] 역시 열린집합이다.
2628
27
공집합([math(\emptyset)])은 원소도 없는 집합이면서도 __내점이 없는 집합__이다. {{{#gray 공집합의 내점을 모두 모은 집합이 공집합 자기자신이다.)}}} 공집합은 따라서 열린집합이다.
29
공집합([math(\emptyset)])은 원소도 없는 집합이면서도 __내점이 없는 집합__이다. {{{#gray (공집합의 내점을 모두 모은 집합이 공집합 자기자신이다.)}}} 공집합은 따라서 열린집합이다.
2830
2931
-------
3032
{{{+1
......
3537
> 1. 여러 개의 [math(O_{i})]들의 합집합은 열린집합이다. 무한 개의 합집합이어도 된다.
3638
> 1. [math(O_{1} \cap O_{2})] 곧 두 열린집합의 교집합 (내지 유한 개의 열린집합들의 교집합)은 열린집합이다.
3739
38
먼저 '''1.'''의 집합은 (일정 조건을 만족하는 [math(\Sigma)][* 흔히 [math(\Sigma)] 기준으로 밑첨자에는 [math(k=1)]을 적어놓고 윗첨자에는 [math(n)]을 적어놓고 오른쪽에는 [math(k)]에 대한 함수 같은 식을 적어놓은 식을 읽고는, [math(k)]가 1인 경우의 값부터 2인 경우의 값, ... , [math(n)]인 경우의 값까지를 모두 합한 값으로 읽는데, 계산할 변수들과 해당 조건의 나열만 (집합처럼) 명확히 알 수 있게 적어놓는 방식으로 조건에 따라 변수를 대입한 각 경우의 값들의 합으로 볼 수 있다. 무한등비급수를 예로 들자면 자연수 전체의 집합을 나타내는 [math(\mathbb{N})]을 이용하여 [math({\sum_{k \in \mathbb{N}}^{}a_{k}})]처럼 [math(k \in \mathbb{N})]만 [math(\Sigma)]의 밑에 적어만 두어도 위에 굳이 [math(\infty)]를 쓸 필요가 없이 {{{#gray 1부터 모든 자연수를 가리킨다는 의미가 되어}}} 충분하다.]의 의미를 안다면 이와 비슷하게 합집합으로도 나타낼 수 있다.) 보면 그 어느 원소(지점)인 [math(p)]를 잡으면, 반드시 어떤 [math(i)]가 있어 한 열린집합인 [math(O_{i})]의 내점이 되면서 적당한 양수 [math(c)]가 있어 [math(\left(p-c,\ p+c\right) \subset O_{i})]가 된다. 합집합의 특성상 '''1.'''의 집합은 [math(O_{i})]을 부분집합으로 가진다. 이에 따라 당연히 [math(\left(p-c,\ p+c\right))] 을 부분집합으로 가진다.
40
먼저 '''1.'''의 집합은 (일정 조건을 만족하는 [math(\Sigma)][* 흔히 [math(\Sigma)] 기준으로 밑첨자에는 [math(k=1)]을 적어놓고 윗첨자에는 [math(n)]을 적어놓고 오른쪽에는 [math(k)]에 대한 함수 같은 식을 적어놓은 식을 읽고는, [math(k)]가 1인 경우의 값부터 2인 경우의 값, ... , [math(n)]인 경우의 값까지를 모두 합한 값으로 읽는데, 계산할 변수들과 해당 조건의 나열만 (집합처럼) 명확히 알 수 있게 적어놓는 방식으로 조건에 따라 변수를 대입한 각 경우의 값들의 합으로 볼 수 있다. 무한등비급수를 예로 들자면 자연수 전체의 집합을 나타내는 [math(\mathbb{N})]을 이용하여 [math({\underset{k \in \mathbb{N}}{\sum}a_{k}})]처럼 [math(k \in \mathbb{N})]만 [math(\Sigma)]의 밑에 적어만 두어도 위에 굳이 [math(\infty)]를 쓸 필요가 없이 {{{#gray 1부터 모든 자연수를 가리킨다는 의미가 되어}}} 충분하다.]의 의미를 안다면 이와 비슷하게 합집합으로도 나타낼 수 있다. 색인(번호) 모아놓은 집합을 [math(I)]라 두면, [math(\underset{i \in I}{\bigcup}O_{i})]으로 나타낼 수 있다.) 보면 그 어느 원소(지점)인 [math(p)]를 잡으면, 반드시 어떤 [math(i)]가 있어 한 열린집합인 [math(O_{i})]의 내점이 되면서 적당한 양수 [math(c)]가 있어 [math(\left(p-c,\ p+c\right) \subset O_{i})]가 된다. 합집합의 특성상 '''1.'''의 집합은 [math(O_{i})]을 부분집합으로 가진다. 이에 따라 당연히 [math(\left(p-c,\ p+c\right))] 을 부분집합으로 가진다.
3941
4042
'''2.'''의 집합 [math(O_{1} \cap O_{2})]가 공집합이 되는 경우와 그렇지 않은 경우를 보자.
4143
[math(O_{1} \cap O_{2})]가 공집합이 된다면 공집합은 열린집합이므로 [math(O_{1} \cap O_{2})]은 열린집합이다.
42
이제 [math(O_{1} \cap O_{2})]가 공집합이 되지 않는 경우를 보자. 이 경우에 [math(O_{1} \cap O_{2})]는 어떤 원소(지점) [math(p)] {{{#gray 교집합의 성질에 따라서}}} [math(p \in O_{1})]과 [math(p \in O_{2})]를 만족한다. [math(O_{1})]과 [math(O_{2})]는 열린집합이므로 [math(p)]는 [math(O_{1})]의 내점이면서 [math(O_{2})]의 내점이다. 따라서 적당한 양의 상수 [math(c_{1})], [math(c_{2})]에 대하여 다음을 만족한다.
44
이제 [math(O_{1} \cap O_{2})]가 공집합이 되지 않는 경우를 보자. 이 경우에 [math(O_{1} \cap O_{2})]는 어떤 원소(지점) 가진다. [math(O_{1} \cap O_{2})] 원소(점) 중 아무 원소(지점)인 [math(p)]를 가져온다고 하자. 그러면 {{{#gray 교집합의 성질에 따라서}}} [math(p \in O_{1})]과 [math(p \in O_{2})]를 만족한다.
45
[math(O_{1})]과 [math(O_{2})]는 열린집합이므로 [math(p)]는 [math(O_{1})]의 내점이면서 [math(O_{2})]의 내점이다. 따라서 적당한 양의 상수 [math(c_{1})], [math(c_{2})]에 대하여 다음을 만족한다.
4346
|| [math(p \in \left(p-c_{1},\ p+c_{1}\right) \subset O_{1} \\ p \in \left(p-c_{2},\ p+c_{2}\right) \subset O_{2})] ||
47
이 때 [math(c=\min \left\{c_{1},\ c_{2}\right\})]으로 두면 다음을 만족한다.
48
|| [math(p \in \left(p-c,\ p+c\right) \subset O_{1} \\ p \in \left(p-c,\ p+c\right) \subset O_{2})] ||
49
곧 [math(p \in \left(p-c,\ p+c\right) \subset O_{1} \cap O_{2})]이며, 이는 곧 [math(p)]가 [math(O_{1} \cap O_{2})]의 내점이 됨을 보이는 것이다.
50
같은 방법으로 유한개의 열린집합의 교집합 곧 자연수 [math(n)]에 대하여 [math(\overset{k \leq n}{\underset{k \in \mathbb{N}}{\bigcap}}O_{k})]은 열린집합이 됨을 보일 수 있다.
51
52
일반적으로 무한 개의 열린집합들의 교집합은 열린집합이 되지 않는다. 이를테면 [math(\underset{k \in \mathbb{N}}{\bigcap}\left(-1,\ \dfrac{1}{k}\right))]가 있다. 이 집합을 [math(A)]라고 하면 [math(0)]은 [math(A)]의 원소이나, 0보다 큰 모든 수는 [math(A)]의 원소가 아니다. {{{#gray (이는 아르키메데스의 정리를 이용하여 증명할 수 있다.)}}} [math(A)]에서 [math(0 \in \left(0-c,\ 0+c\right) \subset A)]를 만족할 양의 상수 [math(c)]가 존재하지 않으므로 [math(0)]은 [math(A)]의 내점이 아니며 따라서 {{{#gray [math(A)]의 원소 중 내점이 아닌 원소가 존재하기 때문에}}} [math(A)]는 열린집합이 아니다.
4453
=== 위상공간 ===
4554
열린집합의 성질을 --퍼가요~♡-- 따와서 일정 규칙을 만족하도록 한다.
4655