r26 vs r27 | ||
---|---|---|
... | ... | |
29 | 29 | |
30 | 30 | 조금 더 식을 바꿔보면 다음과 같이 된다. |
31 | 31 | [math(\cos\left({{\pi} \over {4}}\right)+i \sin\left({{\pi} \over {4}}\right))], [math(\cos\left({{5\pi} \over {4}}\right)+i \sin\left({{5\pi} \over {4}}\right))] |
32 | (실제로 복소평면[* 수직선을 생각해보면 이해하기 쉬운 개념이다. | |
33 | ||
32 | (실제로 복소평면[* 수직선을 생각해보면 이해하기 쉬운 개념이다. 실수부 수직선과 직교되는 허수부 수직선이 있다. 흔히 생각하는 좌표평면처럼 되며, 복소수를 점으로 표시할 수 있다. 단, 복소수는 대소를 비교할 수 없음에 유의하자.]상에서 [[삼각함수]]를 이런 용도로도 사용할 수 있다. [math(i)]의 경우 [math(i=\cos\left({{\pi} \over {2}}\right)+i \sin\left({{\pi} \over {2}}\right))]가 된다.) | |
34 | 33 | |
35 | 34 | === 세제곱근 === |
36 | 35 | 세제곱근 8인 [math(8 = \sqrt[3]8)] 은 실수 범위 내에서는 2이지만 복소수 범위에서는 [math(x=2 \text{ ,or }x=-1\pm\sqrt{3}i)]가 있다. |
... | ... |