•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

헤론의 공식(r18 Blame)

r18
r3
1[[분류:수학]]
2== 개요 ==
r4
3삼각형의 변의 길이가 [math(a, b, c)]라고 하고 [math(s)]가 둘레의 길이의 절반이라면 이때 넓이는 [math(\displaystyle \sqrt{s(s-a)(s-b)(s-c)})] 이다.
r5
4삼각형의 세 변의 길이만 알면 바로 넓이를 구할 수 있기 때문에 매우 유용한 공식이다.--증명하는게 좀 까다로워서 그렇지--
5
6== 증명 ==
7{{{#!wiki style="background-image:url('https://awikifile.theseed.io/ce/ce89c7da3120013ee71c093d0af080ceb6ea4a9663aefe01ac4ef274f7d1b5b7.svg');width:250px;height:250px;background-repeat:no-repeat no-repeat"
r6
8}}}
r7
9꼭짓점 A에서 밑변에 내린 수선의 발을 H라고 하고, [math(\overline{\rm BH}=x)]라고 하자.
r8
10이때, [[피타고라스 정리]]를 이용해 [math(\displaystyle \begin{aligned} c^{2}&=h^{2}+x^{2}\\ b^{2}&=h^{2}+(a-x)^{2} \end{aligned} )]라고 나온다.
r9
11
12두 식을 빼면 [math(\displaystyle c^{2}-b^{2}=2ax-a^{2})]가 나온다.
13
r10
14그러므로 [math(x)]는 [math(\displaystyle \dfrac{a^{2}+c^{2}-b^{2}}{2a} )]가 나온다.
15
16아까 구한 [math(c^{2}=h^{2}+x^{2})]을 바꿔서 풀면
17
r11
18[math(\displaystyle \begin{aligned} h^{2}&=c^{2}-x^{2} \\&=c^{2}-\left( \dfrac{a^{2}+c^{2}-b^{2}}{2a} \right)^{\!2} \end{aligned})] 가 된다.
19
r12
20인수분해를 해
21
r13
22[math(\displaystyle \begin{aligned} \left( c+\dfrac{a^{2}+c^{2}-b^{2}}{2a} \right)\left( c-\dfrac{a^{2}+c^{2}-b^{2}}{2a} \right) \end{aligned})] 이 식을 만들고,
23
24또 인수분해를 해
25
r14
26[math(\displaystyle \begin{aligned} \left[ \dfrac{(a+c)^{2}-b^{2}}{2a} \right]\left[ \dfrac{b^{2}-(a-c)^{2}}{2a} \right] \end{aligned})] 이 식을 만든다.
27
28식을 풀면
29
30[math(\displaystyle \begin{aligned} \dfrac{1}{4a^{2}}(a+b+c)(a+c-b)(a+b-c)(b+c-a) \end{aligned})],
r16
31[math(\displaystyle \begin{aligned} \dfrac{1}{4a^{2}}\cdot 2s \cdot 2(s-b)\cdot 2(s-c)\cdot 2(s-a) \end{aligned})],
r17
32[math(\displaystyle \begin{aligned} \dfrac{4}{a^{2}}s(s-a)(s-b)(s-c) \end{aligned})] 가 되는데,
33
r18
34--거의 다 왔다--
35이때 [math(\triangle ABC)]이 넓이의 제곱은
36[math(\displaystyle \begin{aligned} (\triangle {\rm ABC})^{2}&=\left( \frac{1}{2}ah \right)^{\!2} \end{aligned} )]