r45 vs r46
......
7373
임의의 양수 [math(c)]에 대하여 다음 집합인
7474
||[math(\left\{x|p-c<x<p+c\right\})]||
7575
를 보자.
76
위 집합에서는 [math(c)]가 그 어떤 값이 되어도 무수히 많은 유리수가 존재하면서도 이들은 모두 [math(D)]의 원소이다. 따라서 [math(D)]의 모든 지점은 [math(D)]의 극한점이 된다.
77
한편, 위 집합에서는 [math(c)]가 그 어떤 값이라도 __무수히 많은 무리수__가 존재하며, 따라서 위 집합은 [math(D)]의 부분집합이 될 수 없다. 따라서 [math(D)]의 모든 원소에 해당되는 지점은 [math(D)]의 내점이 아님을 알 수 있다.
76
위 집합에서는 [math(c)]가 그 어떤 값이 되어도 무수히 많은 유리수가 존재하면서도 이들은 모두 [math(D)]의 원소이다. 따라서 [math(D)]의 원소에 해당되는 모든 [math(x)]의 지점은 [math(D)]의 극한점이 된다.
77
한편, 위 집합에서는 [math(c)]가 그 어떤 값이라도 __무수히 많은 무리수__가 존재하며, 따라서 위 집합은 [math(D)]의 부분집합이 될 수 없다. 따라서 [math(D)]의 원소에 해당되는 모든 [math(x)]의 지점은 [math(D)]의 내점이 아님을 알 수 있다.
7878
-------
7979
{{{+2 수렴하는 극한의 유일성}}}
8080
......