r52 vs r53 | ||
---|---|---|
... | ... | |
177 | 177 | |
178 | 178 | {{{+1 '''1.'''}}} 그럼 [math(x=a)]가 [math(D)]의 극한점이 __아닌 경우__가 존재한다. |
179 | 179 | |
180 | {{{+1 '''2.'''}}} | |
180 | {{{+1 '''2.'''}}} 극한점의 조건을 보자. | |
181 | [math(x=a)]가 [math(D)]의 극한점인 조건은 다음과 같다. | |
181 | 182 | ||임의의 양수 [math(c)]에 대하여 |
182 | 183 | [math(\left(\left\{x|a-c<x<a+c\right\} \backslash \left\{ a \right\} \right) \cap D \neq \emptyset)]|| |
184 | ||
183 | 185 | 이 명제의 부정은 |
184 | 186 | ||{{{#red 어떤}}} 양수 [math(c)]에 대하여 |
185 | 187 | [math(\left(\left\{x|a-c<x<a+c\right\} \backslash \left\{ a \right\} \right) \cap D {\color{red}\ =\ }\emptyset)]|| |
186 | 188 | 이 된다. |
187 | 189 | |
188 | {{{+1 '''3.'''}}} | |
190 | {{{+1 '''3.'''}}} 함수의 극한의 정의에서 다음 명제를 보자. | |
189 | 191 | > [math(x \in D)]이고 [math(x \neq a)], [math(a-\delta < x < a+\delta)]이면 |
190 | 192 | > [math(L-\epsilon< f\left(x\right) < L+\epsilon)]이다. |
191 | 193 | |
192 | {{{+1 '''4.'''}}} '''2.'''를 만족하는 [math(c)]를 가져와서 '''3.'''의 [math(\delta)]를 [math(\delta \leq c)]를 만족하는 적당한 값으로 두자.([math(\delta)]를 충분히 작은 값으로 잡자.) | |
194 | {{{+1 '''4.'''}}} '''1.'''의 경우(충분히 나올 수 있다) '''2.'''를 만족하는 [math(c)]를 가져와서 '''3.'''의 [math(\delta)]를 [math(\delta \leq c)]를 만족하는 적당한 값으로 두자.([math(\delta)]를 충분히 작은 값으로 잡자.) | |
193 | 195 | |
194 | 196 | 그러면 [math(L)]의 값과 관계 없이 '''3.'''에 제시된 명제의 가정에서 두 조건이 서로 모순된다. |
195 | || | |
196 | ||
197 | ||1. [math(x \in D)] | |
198 | 2. [math(x \neq a)], [math(a-\delta < x < a+\delta)]|| | |
199 | 따라서 '''가정이 거짓이 되며''', 가정이 거짓인 이유로 '''명제가 전체적으로 참'''이 되버리는 오류가 발생한다. | |
197 | 200 | |
198 | 이는 곧 '''가정이 거짓이 된'''다. 곧 가정이 거짓이므로 '''명제가 전체적으로 참'''이 되버리는 오류가 발생한다. | |
199 | ||
200 | 201 | {{{+1 '''5.'''}}} 이 때 [math(L)]의 값을 아무렇게 잡아도 명제가 참이 된 탓에 "모든 실수값으로 수렴한다"는 오류까지 발생한다. 이는 수렴하는 함수의 유일성에 위배된다. |
201 | 202 | |
202 | 203 | 그러므로 [math(x=a)]가 [math(D)]의 극한점이라는 전제가 있어야 한다. |
... | ... |