r96 vs r97 | ||
---|---|---|
... | ... | |
245 | 245 | * 엡실론-델타법에서 [math(\delta)] 집합 부분 내용의 변화 |
246 | 246 | 위의 집합식에서, 각 [math(\epsilon)]마다 [math(f\left(x\right) \in \left(L-\epsilon ,\ L+\epsilon \right))]이 될 수 있도록 어떤 양수 [math(\delta)]가 존재하여 어떤 한 지점 [math(a)]을 포함하는 열린구간 [math(\left(a-\delta ,\ a+\delta \right))]을 두고 [math(\left(a-\delta ,\ a+\delta \right) \backslash \left\{a \right\})]으로 [math(x)]의 범위를 잡을 수 있다고 가정해보자. 그러면 해당 열린구간 [math(\left(a-\delta ,\ a+\delta \right))]은 열린집합이므로, 다음 두 비교가 나온다. |
247 | 247 | || 번호 || 식 || |
248 | || 1.1. ||양수 [math(\delta)]가 존재하여 [math(x \in \left(a-\delta ,\ a+\delta \right) \backslash \left\{a \right\})] 이다. || | |
249 | || 1.2. ||열린집합 [math(O_{\delta})]가 존재하여 [math(a \in O_{\delta})]이고 [math(x \in O_{\delta} \backslash \left\{ a \right\})] 이다. || | |
248 | || 1.1. ||아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 ... 양수 [math(\delta)]가 존재하여 [math(x \in \left(a-\delta ,\ a+\delta \right) \backslash \left\{a \right\})] 이다. || | |
249 | || 1.2. ||아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 ... 열린집합 [math(O_{\delta})]가 존재하여 [math(a \in O_{\delta})]이고 [math(x \in O_{\delta} \backslash \left\{ a \right\})] 이다. || | |
250 | 250 | |
251 | 앞에서 1.1이면 1.2이라는 설명이 있으므로, 1.2이면 1.1이다는 설명을 해보자. [math(a)]를 포함하는 [math(O_{\delta})]를 아무 거나 가져온다고 하자면, 그 지점 [math(a)]는 그 열린집합 [math(O_{\delta})]의 내점(interior point)이니 적당한 양수 [math(\delta_{1})]를 가져오면 [math(a \in \left(a-\delta_{1},\ a+\delta_{1} \right) \subset O_{\delta})]가 된다. {{{#gray 이 열린집합이 존재함을 보이는 것만으로도 [math(a \in \left(a-\delta_{1},\ a+\delta_{1} \right) \subset O_{\delta})]를 만족하는 적당한 [math(\delta_{1})]는 존재하고 곧 엡실론-델타법에서 말하는 [math(\delta)] 열린구간을 찾는 것이 되므로 극한을 가진다고 말할 수 있다.}}} | |
251 | 앞에서 1.1이면 1.2이라는 설명이 있으므로, 1.2이면 1.1이 된다는 설명을 해보자. [math(a)]를 포함하는 [math(O_{\delta})]를 아무 거나 가져온다고 하자면, 그 지점 [math(a)]는 그 열린집합 [math(O_{\delta})]의 내점(interior point)이니 적당한 양수 [math(\delta_{1})]를 가져오면 [math(a \in \left(a-\delta_{1},\ a+\delta_{1} \right) \subset O_{\delta})]가 된다. {{{#gray 이 열린집합이 존재함을 보이는 것만으로도 [math(a \in \left(a-\delta_{1},\ a+\delta_{1} \right) \subset O_{\delta})]를 만족하는 적당한 [math(\delta_{1})]는 존재하고 곧 엡실론-델타법에서 말하는 [math(\delta)] 열린구간을 찾는 것이 되므로 극한을 가진다고 말할 수 있다.}}} | |
252 | 252 | |
253 | 이로서 | |
253 | 이로서 "[math(\epsilon)]값이 어떠하더라도 [math(f\left(x\right) \in \left(L‐\epsilon ,\ L+\epsilon \right))]이 될 수 있는, [math(a \in O_{\delta})]인 열린집합 [math(O_{\delta})]가 존재할 때 [math(f\left(x\right))]는 [math(x=a)]에서 극한을 가진다"고 바꿀 수 있다. {{{#gray 곧 델타를 다루는 설명을 열린집합을 다루는 설명으로 바꾸는 것이다.}}} | |
254 | 254 | |
255 | 255 | ---- |
256 | 256 | * [math(\epsilon)] 집합 부분의 변화 |
... | ... |