r89 vs r90 | ||
---|---|---|
... | ... | |
237 | 237 | ---- |
238 | 238 | * 부등식을 집합식으로 변환 |
239 | 239 | || 번호 || 부등식 || 집합식 || |
240 | || 1 ||[math(x \ | |
240 | || 1 ||[math(x \neq a)], [math(a-\delta < x < a+\delta)]이다. ||[math(x \in \left(a-\delta ,\ a+\delta \right) \backslash \left\{a \right\})]이다. || | |
241 | 241 | || 2 ||아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 [math(L-\epsilon< f\left(x\right) < L+\epsilon)]이다. ||아무 [math(\epsilon > 0)] 인 [math(\epsilon)]을 잡더라도 [math(f\left(x\right) \in \left(L‐\epsilon ,\ L+\epsilon \right))]이다.|| |
242 | 242 | |
243 | 243 | 여기에서 열린구간을 어떤 한 지점을 포함하는 열린집합으로 바꿔 표현할 수 있다. 곧 위상수학에서 다루는 열린집합들로만 함수의 극한의 정의를 표현할 수 있다. |
... | ... | |
249 | 249 | 따라서 {{{#gray [math(D)]와의 교집합이 공집합으로 되지 않는 집합이므로 [math(O \backslash \left\{ a \right\})]는 공집합이 아니다. 곧}}} [math(O \backslash \left\{ a \right\} \neq \emptyset)]이다. |
250 | 250 | |
251 | 251 | 이를 이용하여 상기 표의 1번 식의 집합식을 다음과 같이 표현할 수 있다. |
252 | || | |
252 | ||열린집합 [math(O_{\delta})]가 존재하여 [math(a \in O_{\delta})]이고 [math(x \in O_{\delta} \backslash \left\{ a \right\})] 이다. || | |
253 | 253 | {{{#gray ([math(O_{\delta} \backslash \left\{ a \right\} \neq \emptyset)] 가 된다. 물론 [math(a \in \left(a-\delta,\ a+\delta \right))] 자체가 [math(O_{\delta})]로 될 수 있다. 위 식을 [math(O_{\delta})]로 표기하지 않고 [math(O)]로 표기할 수 있겠으나, 델타를 다루는 부분에서 변형되었음을 이해할 수 있도록 편의상 [math(O)] 아래 [math(\delta)]를 붙여둔다.)}}} |
254 | 254 | |
255 | 255 | 여기까지만 보면 "[math(\epsilon)]값이 어떠하더라도 [math(f\left(x\right) \in \left(L‐\epsilon ,\ L+\epsilon \right))]이 될 수 있는, [math(a \in O_{\delta})]인 열린집합 [math(O_{\delta})]가 존재할 때 [math(f\left(x\right))]는 [math(x=a)]에서 극한을 가진다"고 바꿀 수 있다. |
... | ... | |
258 | 258 | ---- |
259 | 259 | * [math(\epsilon)] 집합 부분의 변화 |
260 | 260 | 2번 식을 보자. {{{#gray ([math(f\left(x\right))]의 범위를 다루는 부분인데, 변수 하나의 함수를 [math(y=f\left(x\right))] 식으로 다루는 경우가 많기 때문에 여기에서 집합의 지점이나 범위를 언급할 때 편의상 [math(y)]를 들어서 설명한다.)}}} [math(y=L)] 지점을 포함하는 아무 열린집합 [math(O_{\epsilon})]을 가져온다고 하자. |
261 | 이 때 [math(O_{\epsilon}\cap\left(L-\epsilon,\ L+\epsilon\right))]은 [math(\left(L-\epsilon,\ L+\epsilon\right))]의 부분집합이 된다. {{{#gray (델타를 언급하는 부분과 같이 여기에서는 엡실론을 언급하므로 [math(O)]에 [math(\epsilon)]을 첨자로 달아놓았다.)}}} | |
261 | 이 때 [math(O_{\epsilon}\cap\left(L-\epsilon,\ L+\epsilon\right))]은 열린집합이면서 [math(\left(L-\epsilon,\ L+\epsilon\right))]의 부분집합이 된다. {{{#gray (델타를 언급하는 부분과 같이 여기에서는 엡실론을 언급하므로 [math(O)]에 [math(\epsilon)]을 첨자로 달아놓았다.)}}} | |
262 | 262 | |
263 | 263 | |
264 | 264 | |
... | ... |