r66 vs r67
......
2020
내점(Interior point), 극한점(Limit point) 등의 용어가 나오는데, 이들을 먼저 이해해야 엡실론을 이용한 극한의 정의를 이해할 수 있음을 밝힌다. 다만, 건너뛰고 읽을 위키러들이 있을 수 있으니 문서 중간중간에 정의를 설명해놓았다. 실수체계에 대한 자세한 내용은 [[실수체계|이 문서]]를 참조할 수 있다. 위상에 대한 내용은 [[위상수학|이 문서]] 참조.
2121
2222
기호가 조금 복잡할 수 있겠지만 천천히 살펴보면 집합(, 집합의 표기법, 포함관계, 멱집합, 집합의 연산), 명제, 부등호, 절댓값, 함수(, 정의역, 공역, 함숫값), 수열 등의 개념의 결합으로 이루어진 정의(Definition), 정리(Theorem)들이므로 이해하기 쉬울 수 있다. "[math(\epsilon)]-근방" 등의 일부 기호는 풀어서 서술함을 밝힌다.
23
여기에서는 변수가 1개인 함수를 본다.
2324
* 먼저 실수 전체집합을 [math(\mathbb{R})]이라 하자.
24
* 공역을 [math(\mathbb{R})]로 두면서도 실수 [math(x)]에 대한 함수 [math(f\left(x\right))]의 정의역(Domain, 곧 집합이 된다.)을 [math(D)]라 하자. (교과서에 따라 [math(E)]라고 적힌 곳도 있지만 쉬운 이해를 위하여 [math(D)]로 적는다.)
25
* 공역을 [math(\mathbb{R})]로 두면서도 실수 변수 [math(x)]에 대한 함수 [math(f\left(x\right))]의 정의역(Domain, 곧 집합이 된다.)을 [math(D)]라 하자. (교과서에 따라 [math(E)]라고 적힌 곳도 있지만 쉬운 이해를 위하여 [math(D)]로 적는다.)
2526
* (당연히 [math(D \subset \mathbb{R})]이 된다.)
2627
* (또한 이는 [math(f:D \to \mathbb{R})]이 된다.)
2728
......