r90 vs r91 | ||
---|---|---|
... | ... | |
257 | 257 | |
258 | 258 | ---- |
259 | 259 | * [math(\epsilon)] 집합 부분의 변화 |
260 | 2번 식을 보자. {{{#gray ([math(f\left(x\right))]의 범위를 다루는 부분인데, 변수 하나의 함수를 [math(y=f\left(x\right))] 식으로 다루는 경우가 많기 때문에 여기에서 집합의 지점이나 범위를 언급할 때 편의상 [math(y)]를 들어서 설명한다.)}}} [math(y=L)] 지점을 포함하는 아무 열린집합 [math(O_{\epsilon})]을 가져온다고 하자. | |
261 | 이 때 [math(O_{\epsilon}\cap\left(L-\epsilon,\ L+\epsilon\right))]은 열린집합이면서 [math(\left(L-\epsilon,\ L+\epsilon\right))]의 부분집합이 된다. {{{#gray (델타를 언급하는 부분과 같이 여기에서는 엡실론을 언급하므로 [math(O)]에 [math(\epsilon)]을 첨자로 달아놓았다.)}}} | |
260 | 2번 식을 보자. {{{#gray ([math(f\left(x\right))]의 범위를 다루는 부분인데, 변수 하나의 함수를 [math(y=f\left(x\right))] 식으로 다루는 경우가 많기 때문에 여기에서 집합의 지점이나 범위를 언급할 때 편의상 [math(y)]를 들어서 설명한다.)}}} [math(y=L)] 지점을 포함하는 아무 열린집합 [math(O_{\epsilon})]과 양수 [math(\epsilon_{1})]을 가져온다고 하자. | |
261 | 이 때 [math(O_{\epsilon}\cap\left(L-\epsilon_{1},\ L+\epsilon_{1}\right))]은 열린집합이면서 [math(\left(L-\epsilon_{1},\ L+\epsilon_{1}\right))]의 부분집합이 된다. {{{#gray (델타를 언급하는 부분과 같이 여기에서는 엡실론을 언급하므로 [math(O)]에 [math(\epsilon)]을 첨자로 달아놓았다.)}}} | |
262 | 262 | |
263 | 이 때 [math(y \in \left(L-\epsilon_{1},\ L+\epsilon_{1}\right))]가 될 수 있도록, [math(x=a)]를 포함하는 열린집합 [math(O_{\delta})]을 찾아 [math(x)]의 범위를 [math(x \in O_{\delta} \backslash \left\{ a \right\})]로 둘 수 있으며 또 이것이 어떤 [math(O_{\epsilon})]을 가져와도 항상 [math(O_{\delta}]를 찾을 수 있다면 극한값을 가짐을 보이기에 충분하다. | |
263 | 264 | |
264 | 265 | |
265 | 266 | 가지는 극한은 위상에 따라 다를 수 있으며 또 유일하지 않을 수 있다. ([math(\mathbb{R})]의 유한여집합위상 등) |
... | ... |