r17 vs r18
......
8686
i. [math((a \times 0) {\color{green}+(-(a \times 0))}=0)] ([[#Axiom 1.5|Axiom 1.5]]. 덧셈에 대한 [math(a \times 0)]의 역원 [math({\color{green}-(a \times 0)})])
8787
8888
{{{+1 '''3.'''}}} 앞의 '''[[#Lemma 1.1|Lemma 1.1]]'''을 이용하여 '''2.'''의 '''ii.'''을 다음과 같이 바꿀 수 있다.
89
||[math(a \times {\color{blue}0} +(-(a \times 0))=0)]||
90
에서 파랗게 칠한 [math(0)]을 이용한다.
91
||[math(a \times {\color{blue}(0+0)} +(-(a \times 0))=0)]||
89
|| [math(a \times {\color{blue}0} +(-(a \times 0))=0)]||
90
곧 위 식에서 파랗게 칠한 [math(0)]을 이용한다.
91
|| [math(a \times {\color{blue}(0+0)} +(-(a \times 0))=0)]||
9292
93
{{{+1 '''4'''}}} '''3.'''에서 [math(a \times (0+0))]에 대하여 ([math(a)]와 [math(0)]은 각각 실수이므로) 다음을 만족한다. ([[#Axiom 1.11|Axiom 1.11]]. 분배법칙)])
94
||[math(a \times (0+0)=a\times 0 + a\times 0)]||
95
따라서 다음을 만족한다. (파랗게 칠한 부분)
96
||[math({\color{blue}a \times (0+0)}+(-(a \times 0))={\color{blue}(a \times 0 + a \times 0))}+(-(a \times 0))=0)]||
9397
98
{{{+1 '''5.'''}}} '''4.'''의 식에서 [math({\color{blue}(a \times 0 + a \times 0))}+(-(a \times 0))=0)]의 (파랗게 칠한 부분의) 괄호를 옮기면 다음과 같이 된다. ([[#Axiom 1.3|Axiom 1.3]]. 덧셈에 대한 결합법칙)
99
||[math(a \times 0 + {\color{red}(}a \times 0 +(-(a \times 0)){\color{red})}=0)]||
94100
101
{{{+1 '''6.'''}}} '''5.'''에서 '''2.'''의 '''ii.'''을 이용하여, 다음을 얻는다. ([[#Axiom 1.5|Axiom 1.5]]. 덧셈에 대한 [math(a \times 0)]의 역원 [math({\color{green}-(a \times 0)})])
102
||[math(a \times 0 + ({\color{green}a \times 0 +(-(a \times 0))})= a \times 0 + ({\color{green}0}) = 0)]||
103
104
{{{+1 '''7.'''}}} '''6.'''에서 '''2.'''의 '''i.'''을 이용하여, 다음을 얻는다. ([[#Axiom 1.4|Axiom 1.4]]. 덧셈에 대한 [math(a \times 0)]의 항등원 [math({\color{blue}0})])
105
||[math( a \times 0 + {\color{blue}0} = a \times 0 = 0)]||
106
107
108
95109
[[분류:수학]][[분류:더새드위키 수학 프로젝트]]