r18 vs r19
......
9393
{{{+1 '''4'''}}} '''3.'''에서 [math(a \times (0+0))]에 대하여 ([math(a)]와 [math(0)]은 각각 실수이므로) 다음을 만족한다. ([[#Axiom 1.11|Axiom 1.11]]. 분배법칙)])
9494
||[math(a \times (0+0)=a\times 0 + a\times 0)]||
9595
따라서 다음을 만족한다. (파랗게 칠한 부분)
96
||[math({\color{blue}a \times (0+0)}+(-(a \times 0))={\color{blue}(a \times 0 + a \times 0))}+(-(a \times 0))=0)]||
96
||[math({\color{blue}a \times (0+0)}+(-(a \times 0))={\color{blue}(a \times 0 + a \times 0)}+(-(a \times 0))=0)]||
9797
9898
{{{+1 '''5.'''}}} '''4.'''의 식에서 [math({\color{blue}(a \times 0 + a \times 0))}+(-(a \times 0))=0)]의 (파랗게 칠한 부분의) 괄호를 옮기면 다음과 같이 된다. ([[#Axiom 1.3|Axiom 1.3]]. 덧셈에 대한 결합법칙)
9999
||[math(a \times 0 + {\color{red}(}a \times 0 +(-(a \times 0)){\color{red})}=0)]||
......
104104
{{{+1 '''7.'''}}} '''6.'''에서 '''2.'''의 '''i.'''을 이용하여, 다음을 얻는다. ([[#Axiom 1.4|Axiom 1.4]]. 덧셈에 대한 [math(a \times 0)]의 항등원 [math({\color{blue}0})])
105105
||[math( a \times 0 + {\color{blue}0} = a \times 0 = 0)]||
106106
107
따라서 [math(a \times 0 =0)]이 성립한다.
107108
108
109109
[[분류:수학]][[분류:더새드위키 수학 프로젝트]]