[주의!] 문서의 이전 버전(에 수정)을 보고 있습니다. 최신 버전으로 이동
분류
1. 개요2. 열린집합과 위상
2.1. 실수체계의 위상
2.1.1. 내점2.1.2. 열린집합
2.2. 위상공간

1. 개요[편집]

2. 열린집합과 위상[편집]

2.1. 실수체계의 위상[편집]

2.1.1. 내점[편집]

R\mathbb{R}의 부분집합 AA가 있다고 하자. 이 때 AA의 원소(한 지점)인 pp에 대하여 적당한 양수 cc가 있어 {xac<x<a+c}A\left\{x | a-c<x<a+c\right\} \subset A를 만족한다면, ppAA내점(interior point)이라 부른다.

2.1.2. 열린집합[편집]

  • 열린집합의 정의
정의(definition)에는 앞서 보았던 내점(interior point)이 이용된다. 열린집합은 "개폐"할 때의 '개'를 써서 "개집합"이라고도 부른다.
열린집합(Open Set)

R\mathbb{R}의 부분집합 AA가 있고 AA의 모든 원소(지점)이 AA의 내점이 된다면, AA열린집합(open set)이라 부른다.

열린집합의 흔히(?) 잘 아는 예시로는 열린구간이 있다.
열린구간은 집합으로서 실수 aa, bb에 대하여 (a, b)={xa<x<b}\left( {\color{blue}a},\ {\color{green}b} \right) = \left\{x|{\color{blue}a}<x<{\color{green}b}\right\}으로 표기한다.
이 집합의 임의의 원소(지점)인 pp를 가져온다고 하면 a<p<b{\color{blue}a}<p<{\color{green}b}가 되는데 양수 cc를 다음으로 둔다고 하자.
c=min{pa, pb}c=\min \left\{ \left|p-a\right|,\ \left|p-b\right|\right\}
c=min{pa, bp}c=\min \left\{ p-a,\ b-p\right\}
min\min은 minimum을 뜻하는데, { } 괄호 안의 2개 이상의 값들 중 가장 작은 값을 고르는 연산이다.
이렇게 되면 (pc, p+c)(a, b)\left(p-c,\ p+c\right) \subset \left( {\color{blue}a},\ {\color{green}b} \right)를 만족하게 되고, 곧 집합 (a, b)\left( {\color{blue}a},\ {\color{green}b} \right)의 모든 점이 내점임을 보이는 것이다.

당연하게 보이겠지만 R\mathbb{R} 역시 열린집합이다.

공집합(\emptyset)은 열린집합이 아니다.

  • 열린집합의 성질
열린집합의 성질은 다음을 만족한다.
자연수 ii[1] 와 임의의 열린집합 O1O_{1}, O2O_{2}, O3O_{3} ... OiO_{i} ... 에 대하여
  1. 여러 개의 OiO_{i}들의 합집합은 열린집합이다. 무한 개의 합집합이어도 된다.
  2. O1O2O_{1} \cap O_{2} 곧 두 열린집합의 교집합 (내지 유한 개의 열린집합들의 교집합)은 공집합(\emptyset)이 아니라면 열린집합이다.

먼저 1.의 집합은 (일정 조건을 만족하는 Σ\Sigma[2]의 의미를 안다면 이와 비슷하게 합집합으로도 나타낼 수 있다.) 보면 그 어느 원소(지점)인 pp를 잡으면, 반드시 어떤 ii가 있어 한 열린집합인 OiO_{i}의 내점이 되면서 적당한 양수 cc가 있어 (pc, p+c)Oi\left(p-c,\ p+c\right) \subset O_{i}가 된다. 합집합의 특성상 1.의 집합은 OiO_{i}을 부분집합으로 가진다. 이에 따라 당연히 (pc, p+c)\left(p-c,\ p+c\right) 을 부분집합으로 가진다.

2.2. 위상공간[편집]

열린집합의 성질을 퍼가요~♡따와서 일정 규칙을 만족하도록 한다.
[1] 색인(index)에 따른 번호를 의미하고자 index의 앞글자인 i를 가져온다. i 하면 허수 단위 ii를 떠올릴 수 있겠지만, 무작정 이렇게 알기보다는 어느 수식을 읽는다 해도 먼저 각 알파벳을 포함한 기호들이 무슨 의미로 쓰이는지를 파악하면서 읽는 것이 좋다.[2] 흔히 Σ\Sigma 기준으로 밑첨자에는 k=1k=1을 적어놓고 윗첨자에는 nn을 적어놓고 오른쪽에는 kk에 대한 함수 같은 식을 적어놓은 식을 읽고는, kk가 1인 경우의 값부터 2인 경우의 값, ... , nn인 경우의 값까지를 모두 합한 값으로 읽는데, 계산할 변수들과 해당 조건의 나열만 (집합처럼) 명확히 알 수 있게 적어놓는 방식으로 조건에 따라 변수를 대입한 각 경우의 값들의 합으로 볼 수 있다.