r11
r1

(새 문서)
1[[분류:수학]]
r8
2[include(틀:사칙연산)]
r1

(새 문서)
3
r9
4[목차]
r1

(새 문서)
5== 0으로 나누기 ==
r6
6"0으로 나누기"는 되지도 않고 정의하지도 않는다.
r5
7
r6
8먼저 0을 곱하여 0이 나올 수 있는 수는 셀 수 없이 많으며, 어떤 수에 0을 곱해도 0이 된다. 곧 [math(1 \times 0 =0)]만이 성립할 뿐만 아니라 [math(2 \times 0 =0)]도 성립한다. 생각을 더 해보면 다음을 알 수 있다.
9||[math(0=0\times1=0\times2=0\times3=\ldots)]||
10
11이런 계산에서 시각을 달리 보면, '0으로 나누기'가 되지 않는 이유로는 '''0을 곱해서 0이 아닌 수가 나올 수 없기 때문'''임을 알 수 있다. 1에 0을 곱한 식만 보더라도
r1

(새 문서)
12 [math(1 \times 0 =0)]이지 [math(1 \times 0 {\color{red}\ \neq\ } 1)]이다.
r5
13
r6
14또한 '0으로 나누기'를 하면 '''몫을 결정할 수 없다'''. [math(1)]만 하더라도 얼만큼 나누어야 하는 계산으로서 [math(0)]으로 나누기를 한다고 하면, [math(1)]에서 몇 번이고 [math(0)]을 빼도 [math(1)]은 [math(1)] 그대로 되므로 [math(1)]은 [math(0)]으로 영원히 나누어떨어지지 않는다. [math(1)]만 하더라도 몫을 영원히 결정할 수 없는데 몫이 나올 수 있을까?
r5
15
r6
160이 아닌 수에서 '0으로 나누기'가 되지 않는데, 0에서 '0으로 나누기'는 가능할까? 불가능하다. [math(0)]에서 [math(0)]을 몇 번이고 빼도 [math(0)]이다. 애초부터 [math(0)]에서 [math(0)]을 빼지 않아도 이미 값은 "어떤 수로 나눈다 해도 나누어떨어진" 값 곧 나눠야 하는 만큼 빼고 나머지가 [math(0)]이 된 상태이다. 이미 이런 상태인 [math(0)]에서 '0으로 나누기'를 도입할 의미가 없다.
r5
17이런 혼돈이 있으므로 0으로 나누기는 불가능하다.
18
19=== 비슷한 것 ===
20[math(0^0)] 역시 정의하지 않는다.
r11
21[[제곱]]의 의미를 다시 보자면 [math(0)]을 몇 번 곱한 것과 같으냐에 따라 지수를 매기는 의미인데, [math(0^0=\lim_{x \to 0^{+}} x^{x})]
22이고, 식을 변형시키면 좌극한[* 음의 방향에서 다가오는 극한]이 되는데, 이는 정의하지 않기 때문에 [math(0^0)]은 정의하지 않는다.
r6
23
r10
24([math(1)]을 기준으로 정의한다면 __억지로 [math(0^0=1)]이라고 말할 수는 있겠__으나 이는 권장하지 않는다.)
25다만 [math(\displaystyle{\lim_{x \to 0+} {x^x} =1})]임이 알려져 있다. 자세한 풀이는 [[미분]] 연산법을 도입하는 [[로피탈의 정리]]와 [[자연로그]]를 이용한 [[극한]]의 계산 참조.